Five- to Nine-bond ³¹P-³¹P Spin Coupling Constants in Derivatives of Benzene and Naphthalene

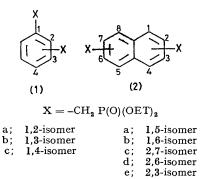
By Ludger Ernst

(Gesellschaft für Biotechnologische Forschung, Mascheroder Weg 1, D-3300 Braunschweig, West Germany)

Summary The 1,5-, 1,6-, 2,7-, and 2,6-isomers of bis(diethoxyphosphinoylmethyl)naphthalene show interbenzylic ${}^{31}P_{-}{}^{31}P$ spin coupling constants over seven, eight, and nine bonds, respectively, which are primarily determined by π -electron contributions.

SPIN coupling constants involving a ³¹P nucleus are usually rather large¹ because of the high effective nuclear charge of ³¹P compared to most other 'common' magnetic nuclei. Consequently, one expects to detect spin coupling between two phosphorus atoms even if they are separated by a considerable distance, yet ${}^{4}J_{\rm PP}$ is the longest-range coupling reported in the literature.¹ The present communication describes ${}^{31}P{}^{-31}P$ couplings of considerable magnitude over a large number of bonds.

From the second-order nature of the proton-decoupled ¹³C n.m.r. spectra of the bis(phosphinoylmethyl)benzenes (**1a**)—(**1c**) we concluded² that there exist sizeable J_{PP} couplings over five, six, and seven bonds, respectively,[†] and we have now studied the diphosphonates (**2a**)—(**2e**) which exhibit interbenzylic J_{PP} over up to nine bonds (Table). For the symmetrical molecules, J_{PP} was derived by two independent methods: (a) by observation of the outer ¹³C satellites in the ³¹P spectra (¹ J_{PC} ca. 137 Hz) from which


TABLE

		$^{31}P_{-}^{31}P$ Spin coupling constants ^a in (1) and (2)								
		(1a)	(1b)	(1c)	(2a)	(2b)	(2c)	(2d)	(2e)	
	${}^{n}J_{\mathbf{PP}}{}^{b}$	9.0(5)	3.1(6)	7.8(7)	1.4(7)	1.8(8)	1.4(8)	$4 \cdot 0(9)$	5.3(5)	
in Hz	200112037	± 0.2 Hz (CD.) CO (1) or CDCL (2) solutions				b Number of bonds separating the coupled nuclei given in				

^a Given in Hz, accuracy ± 0.2 Hz, $(CD_3)_2CO$ (1) or $CDCl_3$ (2) solutions. ^b Number of bonds separating the coupled nuclei given in parentheses.

† By analogy with the corresponding $J_{\rm HH}$ (M. Barfield and B. Chakrabarti, *Chem. Rev.*, 1969, 69, 757) these $J_{\rm PP}$ are termed 'interbenzylic' coupling constants.

 $J_{\rm PP}$ can be measured directly and (b) by analysis of the five-line³ ester ${}^{13}CH_2 - {}^{1}H$ and ${}^{13}CH_3 - {}^{1}H$ spectra which represent the X parts of AA'X spectra and from which J_{AA} , can be derived, because J_{AX} and J_{AX} , are known from

the related monophosphonates.² In the unsymmetrical compound (2b), ${}^{8}J_{PP}$ is taken directly from the ${}^{31}P-{}^{1}H$ spectrum which shows an AB pattern.

The large magnitudes of the interbenzylic J_{PP} , in particular ${}^{9}J_{PP} = 4.0$ Hz, point to considerable π -electron contribution to these couplings. In the preferred conformations⁴ of the present benzyl-type phosphonates the C-P bonds lie parallel to the adjacent carbon p_z orbitals. This geometry is most favourable for σ - π exchange polarization which transmits the coupling information to the aromatic π -system and it is responsible for the large magnitude of the observed J_{PP} .

It is interesting to note the large decrease of ${}^{5}J_{PP}$ as the mobile bond order of the intervening aromatic bond is decreased; compare (1a) with (2e).

(Received, 16th March 1977; Com. 257.)

¹G. Mavel, in 'Annual Reports on NMR Spectroscopy,' ed. E. F. Mooney, Vol. 5B, Academic Press, London, 1973, p. 1; R. Grinter, in 'Specialist Periodical Reports; Nuclear Magnetic Resonance,' Senior Reporter R. K. Harris, Vols. 1—5, The Chemical Society, 1972–1976, ch. 2.
² L. Ernst, Org. Magnetic Resonance, 1977, 9, 35.
³ M. Fild and W. Althoff, J.C.S. Chem. Comm., 1973, 933.

⁴ Cf. e.g. K. Chum, J. B. Rowbotham, and T. Schaefer, Canad. J. Chem., 1974, 52, 3489.